Stochastic Analysis and Mathematical Physics II

4th International ANESTOC Workshop in Santiago, Chile

Gebonden Engels 2002 2003e druk 9783764369972
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The seminar on Stochastic Analysis and Mathematical Physics of the Ca­ tholic University of Chile, started in Santiago in 1984, has being followed and enlarged since 1995 by a series of international workshops aimed at pro­ moting a wide-spectrum dialogue between experts on the fields of classical and quantum stochastic analysis, mathematical physics, and physics. This volume collects most of the contributions to the Fourth Interna­ tional Workshop on Stochastic Analysis and Mathematical Physics (whose Spanish abbreviation is "ANESTOC"; in English, "STAMP"), held in San­ tiago, Chile, from January 5 to 11, 2000. The workshop style stimulated a vivid exchange of ideas which finally led to a number of written con­ tributions which I am glad to introduce here. However, we are currently submitted to a sort of invasion of proceedings books, and we do not want to increase our own shelves with a new one of the like. On the other hand, the editors of conference proceedings have to use different exhausting and com­ pulsive strategies to persuade authors to write and provide texts in time, a task which terrifies us. As a result, this volume is aimed at smoothly start­ ing a new kind of publication. What we would like to have is a collection of books organized like our seminar.

Specificaties

ISBN13:9783764369972
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:162
Uitgever:Birkhäuser Basel
Druk:2003

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

1 Quantum Boltzmann Statistics in Interacting Systems.- 1 Introduction.- 2 Quantum Boltzmann statistics for entangled operators.- 3 References.- 2 Interaction Representation Method for Markov Master Equations in Quantum Optics.- 1 Sufficient conditions for conservativity.- 2 A priori bounds.- 3 Structure of generators of MME in quantum optics.- 4 Examples.- 5 Discussion.- 6 References.- 3 A Stochastic Variational Principle for Burgers Equation and its Symmetries.- 1 Introduction.- 2 Variational problem.- 3 Stochastic first integrals.- 4 An integration by parts formula.- 5 References.- 4 Noncommutative Versions of Prohorov and Varadhan Theorems.- 1 Vague and narrow convergence of positive functionals.- 1.1 Vague and narrow topologies.- 1.2 Tightness.- 1.3 Application to quantum dynamical semigroups.- 2 Noncommutative large deviations.- 2.1 Noncommutative capacities and q-semi-continuity.- 2.2 Large deviation principle for states.- 2.3 General Varadhan-type theorem.- 3 References.- 5 Gaussian Domination and Bose-Einstein Condensation.- 1 Introduction.- 2 Some Historical Remarks.- 2.1 Mean field and related model systems: Some mathematical approaches.- 2.2 Infrared bounds approach.- 3 Model Systems.- 4 Gaussian Domination and its Application to the Study of Bose Systems.- 4.1 Bogolubov’s inner product.- 4.2 Bose-Einstein condensation.- 4.3 Upper and Lower Bounds on
$$
\left\langle {{{\hat n}_j}} \right\rangle $$.- 4.4 Gaussian Domination and upper bound on
$$
{\left( {a_j^\dag ,{a_j}} \right)_{{H^L}}}
$$.- 4.5 The phase transition.- 5 References.- 6 Quantum Markov Semigroups and their Stationary States.- 1 Introduction.- 1.1 Preliminaries.- 2 Ergodic theorems.- 3 The minimal quantum dynamical semigroup.- 4 The existence of Stationary States.- 4.1 A general result.- 4.2 Conditions on the generator.- 4.3 Applications.- 5 Faithful Stationary States and Irreducibility.- 5.1 Introduction.- 5.2 The support of an invariant state.- 5.3 Subharmonic projections. The case A=B (h).- 5.4 Examples.- 6 The convergence towards the equilibrium.- 6.1 A result due to Frigerio and Verri.- 6.2 Quantum Markovian Cocycles.- 6.3 Main results.- 6.4 Applications.- 7 References.- 7 Exponential Decay for Perturbations of Pure Point Hamiltonians.- 1 Introduction.- 2 Absolutely continuous perburbations of pure point operators.- 3 Sojourn time and Spectral Entropy.- 4 References.- 8 Propagation of Chaos in Classical and Quantum Kinetics.- 1 Overview.- 2 Classical and Quantum Molecular Chaos.- 2.1 Classical molecular chaos.- 2.2 Quantum molecular chaos.- 2.3 Spohn’s quantum mean-field dynamics.- 3 Classical Manifestations of the Propagation of Quantum Molecular Chaos.- 3.1 Measurement of complete observables.- 3.2 Generalized measurements.- 4 Acknowledgements.- 5 References.- 9 Imprimitivity Systems and Quantum Codes.- 1 Introduction.- 2 Imprimitivity systems and quantization of classical codes.- 3 Tensor products of imprimitivity system and quantum codes.- 4 References.- 10 Boson Fock Algebra on the Unit Ball of the d-Dimensional Complex Numbers.- 1 Introduction.- 2 Operators on the algebra A0 (Bd).- 3 Introduction to Boson Fock space.- 4 Boson Fock space on the unit ball.- 5 References.

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Stochastic Analysis and Mathematical Physics II