Mathematische Methoden in der Physik

Teil 2: Differentialrechnung II · Integrale · Gewöhnliche Differentialgleichungen · Lineare Funktionenräume · Partielle Differentialgleichungen

Paperback Duits 1979 9783798505179
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Das Riemannsche Prinzip (Zerlegung der Definitionsmenge B in »einfache« Mengen B;)liegt fast allen numerischen Berechnungen und physikalischen Messungen von Integralen zugrunde. Das Lebesguesche Prinzip (Zerlegung der Zielmenge IR) fiihrt in allen Fiillen zum Erfolg, in denen das Integral nach 5.1.2.1 existiert. Entgegen dem Eindruck, den man aus einigen Darstellungen der Integrationstheorie gewinnen kann, liegt die Bedeutung des allgemeinen (Uber den Riemannschen weit hinausgehenden) Integralbegriffes nicht in der Moglichkeit, solche stark unstetigen Funktionen wie in 5 (ii) inte­ grieren zu konnen (den Physiker interessieren solche Funktionen ohne­ hin nicht). Entscheidend ist, daB die Menge der nach Lebesgue integrier­ baren Funktionen viel schonere Eigenschaften hat als ihre Teilmenge der Riemartn-integrierbaren Funktionen; iihnlich wie bei dem Obergang von (Q auf IR erhalten wir Vollstiilldigkeitseigenschaftell (siehe Satz 5.1 J. 7 und 7.1.3.4, andererseits Beispiel 5 (iii)). Dadurch, daB im Riemannschen Konzept in 5.1.1.3 und 5.1.0.3 nur endliche Summen zugelassen sind, entrallt zunachst die Moglichkeit, unbeschriinkte Funktionen oder Bereiche zuzulassen. Erst Uber den »Umweg« der "uneigentlichen Integrale" (5.2.3) sind viele in der Praxis + 00 1 d x2 bedeutsame Integrale wie S e- dx und S ,;; zu erklaren, obwohl X -x 0 V diese gemaB dem Konzept 5.1.0.3 genauso »gute« Integrale sind wie 1 2 etwa S x dx. o DaB immer noch in Grundkursen die Riemannsche Methode zur Definitioll des Integrals benutzt wird, ist wohl nur aus historischen GrUnden zu erkliiren.

Specificaties

ISBN13:9783798505179
Taal:Duits
Bindwijze:paperback
Aantal pagina's:244
Uitgever:Steinkopff

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

4. Differentialrechnung (Fortsetzung von Band 1 = UTB 786).- 4.3 Elementare Funktionen.- 4.4 Tensoranalysis.- 5. Integrale.- 5.1 Integration im ?n.- 5.2 Integration auf ?n.- 5.3 Integration im 𝔼3.- 5.4 Integration auf ? (Funktionentheorie).- 6. Gewöhnliche Differentialgleichungen.- 6.0.1 Motivation.- 6.0.2 Klassifikation.- 6.1 Gewöhnliche explizite Differentialgleichungen 1. Ordnung.- 6.2 Lineare Differentialgleichungen.- 7. Lineare Funktionenräume (ein Ausblick).- 7.0 Einstieg.- 7.1 Fourieranalyse.- 7.2 Distributionen.- 7.3 Die Fouriertransformation.- 8. Partielle Differentialgleichungen (ein Ausblick).- 8.1 Die Potential- und die Wellengleichung.- 8.2 Anfangs- und Randwertprobleme.- 9. Register.- 9.1 Bestiarium der Vektorrechnung.- 9.2 Vertauschbarkeit von Operationen.- 9.3 Register für wichtige Beweisverfahren, Axiomensysteme, Klassen von Funktionen, physikalische Beispiele.- 9.4 Liste der Symbole und Abkürzungen.- 9.5 Sachwortverzeichnis..- Berichtigungen zu Teilband 1.

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Mathematische Methoden in der Physik