1 Global Optimization: An Overview.- 1. Global Optimization Theory: General Concepts.- 1.1. Statements of the global optimization problem.- 1.2. Types of prior information about the objective function and a classification of methods.- 1.2.1. Types of prior information.- 1.2.2. Classification of principal approaches and methods of the global optimization.- 1.2.3. General properties of multiextremal functions.- 1.3. Comparison and practical use of global optimization algorithms.- 1.3.1. Numerical comparison.- 1.3.2. Theoretical comparison criteria.- 1.3.3. Practical optimization problems.- 2. Global Optimization Methods.- 2.1. Global optimization algorithms based on the use of local search techniques.- 2.1.1. Local optimization algorithms.- 2.1.2. Use of local algorithms in constructing global optimization strategies.- 2.1.3. Multistart.- 2.1.4. Tunneling algorithms.- 2.1.5. Methods of transition from one local minimizer into another.- 2.1.6. Algorithms based on smoothing the objective function.- 2.2. Set covering methods.- 2.2.1. Grid algorithms (Passive coverings).- 2.2.2. Sequential covering methods.- 2.2.3. Optimality of global minimization algorithms.- 2.3. One-dimensional optimization, reduction and partition techniques.- 2.3.1. One-dimensional global optimization.- 2.3.2. Dimension reduction in multiextremal problems.- 2.3.3. Reducing global optimization to other problems in computational mathematics.- 2.3.4. Branch and bound methods.- 2.4. An approach based on stochastic and axiomatic models of the objective function.- 2.4.1. Stochastic models.- 2.4.2. Global optimization methods based on stochastic models.- 2.4.3. The Wiener process case.- 2.4.4. Axiomatic approach.- 2.4.5. Information-statistical approach.- 2. Global Random Search.- 3. Main Concepts and Approaches of Global Random Search.- 3.1. Construction of global random search algorithms: Basic approaches.- 3.1.1. Uniform random sampling.- 3.1.2. General (nonuniform) random sampling.- 3.1.3. Ways of improving the efficiency of random sampling algorithms.- 3.1.4. Random coverings.- 3.1.5. Formal scheme of global random search.- 3.1.6. Local behaviour of global random search algorithm.- 3.2. General results on the convergence of global random search algorithms.- 3.3. Markovian algorithms.- 3.3.1. General scheme of Markovian algorithms.- 3.3.2. Simulated annealing.- 3.3.3. Methods based on solving stochastic differential equations.- 3.3.4. Global stochastic approximation: Zielinski’s method.- 3.3.5. Convergence rate of Baba’s algorithm.- 3.3.6. The case of high dimension.- 4. Statistical Inference in Global Random Search.- 4.1. Some ways of applying statistical procedures to construct global random search algorithms.- 4.1.1. Regression analysis and design.- 4.1.2. Cluster analysis and pattern recognition.- 4.1.3. Estimation of the cumulative distribution function, its density, mode and level surfaces.- 4.1.4. Statistical modelling (Monte Carlo method).- 4.1.5. Design of experiments.- 4.2. Statistical inference concerning the maximum of a function.- 4.2.1. Statement of the problem and a survey of the approaches for its solution.- 4.2.2. Statistical inference construction for estimating M.- 4.2.3. Statistical inference for M, when the value of the tail index ? is known.- 4.2.4. Statistical inference, when the value of the tail index ? is unknown.- 4.2.5. Estimation of F(t).- 4.2.6. Prior determination of the value of the tail index ?.- 4.2.7. Exponential complexity of the uniform random sampling algorithm.- 4.3. Branch and probability bound methods.- 4.3.1. Prospectiveness criteria.- 4.3.2. The essence of branch and bound procedures.- 4.3.3. Principal construction of branch and probability bound methods.- 4.3.4. Typical variants of the branch and probability bound method.- 4.4. Stratified sampling.- 4.4.1. Organization of stratified sampling.- 4.4.2. Statistical inference for the maximum of a function based on its values at the points of stratified sample.- 4.4.3. Dominance of stratified over independent sampling.- 4.5. Statistical inference in random multistart.- 4.5.1. Problem statement.- 4.5.2. Bounded number of local maximizers.- 4.5.3. Bayesian approach.- 4.6. An approach based on distributions neutral to the right.- 4.6.1. Random distributions neutral to the right and their properties ....- 4.6.2. Bayesian testing about quantiles of random distributions.- 4.6.3. Application of distributions neutral to the right to construct global random search algorithms.- 5. Methods of Generations.- 5.1. Description of algorithms and formulation of the basic probabilistic model.- 5.1.1. Algorithms.- 5.1.2. The basic probabilistic model.- 5.2. Convergence of probability measure sequences generated by the basic model.- 5.2.1. Assumptions.- 5.2.2. Auxiliary statements.- 5.2.3. Convergence of the sequences (5.2.7) and (5.2.8) to?*(dx).- 5.3. Methods of generations for eigen-measure functional estimation of linear integral operators.- 5.3.1. Eigen-measures of linear integral operators.- 5.3.2. Closeness of eigen-measures to ?* (dx).- 5.3.3. Description of the generation methods.- 5.3.4. Convergence and rate of convergence of the generation methods.- 5.4. Sequential analogues of the methods of generations.- 5.4.1. Functionals of eigen-measures.- 5.4.2. Sequential maximization algorithms.- 5.4.3. Narrowing the search area.- 6. Random Search Algorithms for Solving Specific Problems.- 6.1. Distribution sampling in random search algorithms for solving constrained optimization problems.- 6.1.1. Basic concepts.- 6.1.2. Properties of D(x).- 6.1.3. General remarks on sampling.- 6.1.4. Manifold defined by linear constraints.- 6.1.5. Uniform distribution on an ellipsoid.- 6.1.6. Sampling on a hyperboloid.- 6.1.7. Sampling on a paraboloid.- 6.1.8. Sampling on a cone.- 6.2. Random search algorithm construction for optimization in functional spaces, in discrete and in multicriterial problems.- 6.2.1. Optimization in functional spaces.- 6.2.2. Random search in multicriterial optimization problems.- 6.2.3. Discrete optimization.- 6.2.4. Relative efficiency of discrete random search.- 3. Auxiliary Results.- 7. Statistical Inference for the Bounds of Random Variables.- 7.1. Statistical inference when the tail index of the extreme value distribution is known.- 7.1.1. Motivation and problem statement.- 7.1.2. Auxiliary statements.- 7.1.3. Estimation of M.- 7.1.4. Confidence intervals for M.- 7.1.5. Testing statistical hypotheses about M.- 7.2. Statistical inference when the tail index is unknown.- 7.2.1. Statistical inference for M.- 7.2.2. Estimation of ?.- 7.2.3. Construction of confidence intervals and statistical hypothesis test for ?.- 7.3. Asymptotic properties of optimal linear estimates.- 7.3.1. Results and consequences.- 7.3.2. Auxiliary statements and proofs of Theorem 7.3.2 and Proposition 7.1.3.- 7.3.3. Proof of Theorem 7.3.1.- 8. Several Problems Connected with Global Random Search.- 8.1. Optimal design in extremal experiments.- 8.1.1. Extremal experiment design.- 8.1.2. Optimal selection of the search direction.- 8.1.3. Experimental design applying the search direction (8.1.15).- 8.2. Optimal simultaneous estimation of several integrals by the Monte Carlo method.- 8.2.1. Problem statement.- 8.2.2. Assumptions.- 8.2.3. Existence and uniqueness of optimal densities.- 8.2.4. Necessary and sufficient optimality conditions.- 8.2.5. Construction and structure of optimal densities.- 8.2.6. Structure of optimal densities for nondifferentiable criteria.- 8.2.7. Connection with the regression design theory.- 8.3. Projection estimation of multivariate regression.- 8.3.1. Problem statement.- 8.3.2. Bias and random inaccuracies of nonparametric estimates.- 8.3.3. Examples of asymptotically optimal projection procedures with deterministic designs.- 8.3.4. Projection estimation via evaluations at random points.- References.