1 Solar Cookers.- 1.1 Introduction.- 1.2 History of solar cookers.- 1.3 Solar cooking.- 1.4 Types of solar cooker.- 1.5 Direct or focussing type solar cooker.- 1.5.1 Wisconsin solar cooker.- 1.5.2 Umbrella type solar cooker.- 1.5.3 Paraboloidal type solar cooker.- 1.5.4 Fresnel reflector type cooker.- 1.5.5 Fixed soil-cement spheriodal reflector solar cooker.- 1.5.6 Light weight molded aggregate reflector type solar cooker.- 1.5.7 Multi-mirror or multi-facet type solar cooker.- 1.5.8 Cylindro-parabolic solar cooker.- 1.6 Indirect or box type solar cooker.- 1.6.1 Solar hot box cooker.- 1.6.2 Solar oven.- 1.7 Advanced solar cookers.- 1.7.1 Heat transfer system type solar cooker.- 1.7.2 Energy storage type solar cookers.- 1.8 Performance of solar cookers.- 1.8.1 Direct type solar cooker.- 1.8.2 Box type solar cooker.- 1.9 Testing of solar cooker.- References.- 2 Solar Desalination.- 2.1 Introduction.- 2.2 History.- 2.3 Single effect basin type solar still.- 2.3.1 Types of single effect basin still.- 2.3.2 Basics of solar still.- 2.3.3 Performance prediction of basin-type still.- 2.3.4 Experiments on solar stills.- 2.4 Tilted tray solar still.- 2.5 Wick type solar still.- 2.6 Multiple effect diffusion solar still.- 2.7 Multistage flash distillation.- References.- 3 Solar Food Drying.- 3.1 Introduction.- 3.2 History of solar drying.- 3.3 Basics of solar drying.- 3.4 Types of solar dryers.- 3.4.1 Natural convection or direct type solar dryers.- 3.4.1.1 Rack type solar dryer.- 3.4.1.2 Solar cabinet or box dryer.- 3.4.1.3 Greenhouse type solar dryer.- 3.4.2 Indirect type solar dryers.- 3.4.2.1 Chimney type paddy dryer.- 3.4.2.2 Fruit and vegetable dryer.- 3.4.2.3 Solar wind ventilated dryer.- 3.4.3 Forced circulation type dryers.- 3.4.3.1 Bin type grain dryers.- 3.4.3.2 Tunnel or belt dryers.- 3.4.3.3 Solar assisted or hybrid dryers.- 3.4.3.4 Solar timber drying.- 3.5 Theory and simulation models.- 3.5.1 Single layer drying.- 3.5.2 Deep-bed grain drying.- 3.5.2.1 Logarithmic model.- 3.5.2.2 Partial differential equation model.- (A) Fixed bed model.- (B) Cross flow model.- (C) Concurrent flow model.- (D) Counter-flow model.- 3.6 Energy requirements for grain drying.- References.- 4 Solar Powered Water Pump.- 4.1 Introduction.- 4.2 History of solar pumps.- 4.3 Components of solar energy pumps.- 4.3.1 Collector type.- 4.3.2 Storage type.- 4.3.3 Heat engine.- 4.3.4 Working Fluid.- 4.4 Typical solar pump systems.- 4.4.1 The Coolidge, Arizona, 150 KW solar thermal irrigation pump..- 4.4.2 Gila Bend, Phoenix, Arizona, 37 KW solar powered irrigation pump.- 4.4.3 Wi1lard, New Mexico, 19 KW solar thermal water pump.- 4.4.4 SOFRETES solar pump.- 4.4.5 Bake 1, Senegal, 32.4 KW solar powered irrigation system.- 4.4.6 TRISAIA CNEN, Rome, Italy, 3 KW solar water pumping plant.- 4.4.7 Special solar pumps.- 4.4.8 Mead, Nebraska, 25 KW photovoltaic powered irrigation pump..- References.- 5 Solar Greenhouses.- 5.1 Introduction.- 5.2 History.- 5.3 Basics of plant growth.- 5.3.1 Light intensity.- 5.3.2 Temperature.- 5.3.3 Humidity.- 5.3.4 Air movement.- 5.3.5 Carbon dioxide.- 5.3.6 Nutrients.- 5.3.7 Watering.- 5.4 Greenhouse design.- 5.4.1 Orientation and tilt.- 5.4.2 Modes of heat transfer.- 5.4.3 Glass or plastic greenhouses.- 5.4.4 Heat storage in the greenhouse.- 5.5 Energy conservation techniques.- 5.6 Heating and cooling of greenhouses.- 5.7 Typical greenhouse designs.- 5.7.1 The Brace greenhouse design.- 5.7.2 A low energy Australian greenhouse.- 5.7.3 The Rutgers university solar greenhouse.- 5.7.4 A commercial solar greenhouse at Tennessee.- 5.7.5 New Alchemy Institute solar passive greenhouse.- 5.7.6 The KISR greenhouse for warm climates.- 5.7.7 UAE plastic greenhouse for warm climates.- 5.7.8 Residential attached greenhouse.- 5.8 Performance prediction of crop yield and thermal environment in greenhouse.- References.- 6 Solar Cells.- 6.1 Introduction.- 6.2 History.- 6.3 Fundamentals of photovoltaic conversion.- 6.3.1 Semiconductor materials.- 6.3.2 Photon energy.- 6.3.3 Electron hole concentration and Fermi level.- 6.3.4 A p-n junction.- 6.3.5 Absorption in a semiconductor.- 6.3.6 Solar cell materials.- 6.4 Efficiency losses.- 6.4.1 Reflection losses.- 6.4.2 Shade due to current collection grid.- 6.4.3 Incomplete absorption of photon energy.- 6.4.4 Excess photon energy loss.- 6.4.5 Collection loss.- 6.4.6 Voltage factor loss.- 6.4.7 Curve factor loss.- 6.4.8 Series and shunt resistance loss.- 6.5 Efficiency of solar cell.- 6.6 Basic modelling of solar cells.- 6.6.1 The p-n junction.- 6.6.2 The heterojunction.- 6.6.3 Metal semiconductor junctions.- 6.7 Silicon solar cells.- 6.7.1 Purification of silicon.- 6.7.2 Methods of growing crystal.- 6.7.2.1 The Czochralski (CZ) process.- 6.7.2.2 Heat exchanger method (HEM).- 6.7.2.3 Ribbon technology (EFG).- 6.7.2.4 The dendritic Web method (WEB).- 6.7.2.5 Silicon or Ceramic (SOC) method.- 6.7.2.6 SEMIX method.- 6.7.2.7 Zone refining process.- 6.7.2.8 Other methods.- 6.7.3 Silicon wafers to silicon solar cells.- 6.7.3.1 Surface preparation.- 6.7.3.2 Dopants diffusion.- 6.7.3.3 Grid formation.- 6.7.3.4 Antireflective coating.- 6.7.3.5 Module design.- 6.7.4 Polycrystalline silicon cells.- 6.7.5 Amorphous silicon cells.- 6.7.6 High efficiency silicon cells.- 6.8 Gallium arsenide solar cells.- 6.9 CdS/Cu2S solar cells.- 6.10 Cadmium telluride solar cell.- 6.11 Photovoltaic sunlight concentrators.- References.- Appendices.- Appendix 1 Conversion factors.- Appendix 2 Physical properties of some solid materials.- Appendix 3 Physical properties of some building and insulating materials..- Appendix 4 Physical properties of some liquids..- Appendix 5 Physical properties of some liquid metals..- Appendix 6 Physical properties of saturated water..- Appendix 7 Physical properties of saturated steam..- Appendix 8 Physical properties of some gases..- Appendix 9 Physical properties of dry air at atmospheric pressure..- Apprndix 10 Freezing points of aqueous solutions..- Appendix 11 Properties of typical refrigerants..- Appendix 12 Extraterrestrial solar spectral irradiance at mean Sun-Earth distance..- Author Index.