, , , , e.a.

A Variational Theory of Convolution-Type Functionals

Paperback Engels 2023 9789819906840
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides a general treatment of a class of functionals modelled on convolution energies with kernel having finite p-moments. A general asymptotic analysis of such non-local functionals is performed, via Gamma-convergence, in order to show that the limit may be a local functional representable as an integral. Energies of this form are encountered in many different contexts and the interest in building up a general theory is also motivated by the multiple interests in applications (e.g. peridynamics theory, population dynamics phenomena and data science). The results obtained are applied to periodic and stochastic homogenization, perforated domains, gradient flows, and point-clouds models.

This book is mainly intended for mathematical analysts and applied mathematicians who are also interested in exploring further applications of the theory to pass from a non-local to a local description, both in static problems and in dynamic problems.

 

Specificaties

ISBN13:9789819906840
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Nature Singapore

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Chapter 1. Introduction.- Chapter 2. Convolution-Type Energies.- Chapter 3. The Γ-limit of a Class of Reference Energies.- Chapter 4. Asymptotic Embedding and Compactness Results.- Chapter 5. A Compactness and Integral-Representation Result.- Chapter 6. Periodic Homogenization.- Chapter 7. A Generalization and Applications to Point Clouds.- Chapter 8. Stochastic Homogenization.- Chapter 9. Application to Convex Gradient Flows.</p><p><br></p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        A Variational Theory of Convolution-Type Functionals